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JAHS Assembly Language
 

The overall architecture design will be implementing an accumulator style operating system, 
which utilizes an implicit accumulator register. This system will work by calling values to and 
from the stack with each instruction and manipulating the accumulator register, as well as any 
other registers used. This system utilizes a dedicated accumulator in order to keep instruction 
size low, as well as general purpose registers to aid the programmer and shorten programs. For 
instance, [A] type instructions primarily use the accumulator and [I] type instructions allow use 
of other registers. Instruction types are discussed in more detail below.  

Register 
Name 

Number Usage Stored across a call? 

$0 0 constant 0 N/A 

$r0 1 procedure return 0 No 

$r1 2 procedure return 1 No 

$a0 3 argument 0 No 

$a1 4 argument 1 No 

$a2 5 argument 2 No 

$a3 6 argument 3 No 

$acc 7 implicit accumulator No 

$t0 8 temporary register 0 No 

$t1 9 temporary register 1 No 

$t2 10 temporary register 2 No 

$s0 11 Saved temporary register 0 Yes 

$s1 12 Saved temporary register 1 Yes 

$cr 13 comparison register. Stores the results of bnez 
and bez instructions. Details below. 

No 

$sp 14 stack pointer Yes 

$ra 15 return address (used by function call) No 
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1. Register $cr (13): Stores the result of set less than operations for use in conditional 
branches. Not saved over procedure calls. 

2. Registers $a0-$a3 (3-6) are used to pass the first four arguments to procedures. Any other 
arguments are passed on the stack. Registers $r0 and $r1 (1, 2) are used to return values 
from procedures. Neither $a or $r registers are preserved across a call.  

3. Register $sp (14) points to the last location on the stack. Register $ra (15) is written to by 
the srj instruction. 

4. Temporary Registers $t0-$t2 (8-10): Registers used by the program during execution. Not 
stored across a procedure call. 

5. Saved Temporary Registers $s0-$s1 (11-12): Registers used by the program during 
execution. Stored across a procedure call. 

6. Register $pc: Stores the address (from the code segment) of the current instruction being 
executed. Not part of the register file since it is never directly referred to by an 
instruction. 

7. Memory is addressed at every 16-bit chunk. This means that in the programs, PC + 1 is 
where the next instruction is located.. 
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Syntax and Semantics of Instruction Set 
 

 
Addition (A) 
 add A 
 
Adds value in register A to whatever is currently stored inside the accumulator, and stores the 
result into the accumulator. 
 

 
 
Subtraction (A) 
 sub A 
 
Subtracts value in register A from whatever is stored inside the accumulator, and stores the result 
into the accumulator. 

 
Load from memory (I) 
 lm A, off 
 
Loads value of A from the memory location A plus the signed immediate offset off into the 
accumulator register. 

 
 
Store into memory (I) 

sm A, off 
 
Stores contents of the accumulator into memory location A plus the signed immediate offset off.  

 
Set Less Than (A) 
 slt A 
 
Determines if A is less than the value stored in the accumulator register and stores the result in 
the comparison register: 0 if A is greater than the accumulator value and 1 if A is less than the 
accumulator value. 
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Set Greater Than (A) 
 sgt A 
 
Determines if A is greater than the value stored in the accumulator register and stores the result 
in the comparison register: 0 if A is less than the accumulator value and 1 if A is greater than the 
accumulator value. 

 
Branch Equal to Zero (B) 
 bez L 
 
Sets the program counter to label L if the comparison register is equal to zero.  

 
Branch Not Equal to Zero (B) 

benz L 
 
Sets the program counter to label L if the comparison register is not equal to zero. 

 
Set Immediate (I) 

si rs, imm 
 

Sets the value of a register to an immediate. 
 

Set Register (A) 
sr R 
 

Sets the value of the accumulator to that of a register R. 
 

 
Copy Register (A) 

cr R 
 

Sets the value of register R to that of the accumulator. 
 

Add Immediate (I) 
addi rs, imm 
 

Performs the ADD operation on the sign-extended immediate and the value in register rs, and 
stores the result in register rs. 
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Set Return and Jump (B) 

srj L 
 

Sets the $ra register to $PC + 1 and jumps to label L by setting $pc to the label L. 
 

Jump (B) 
 j L 
 
Jump to label L 

 
Jump Register (A) 
 jr A 
 
Jump to address stored in register A 

 
Check Equality (A) 
 eq A 
 
Evaluates the equality of the value within register A to the value stored in the accumulator, and 
stores the result into the comparison register: 1 if they are equal, 0 if they are not. 

 
Load Upper Immediate (I) 
 lui A, imm 
 
Loads the passed immediate into the most significant 8 bits of register A, and clears the lower 8 
bits. 

 
Or Immediate (I) 
 ori rs, imm 
 
Performs bitwise OR on the zero-extended immediate and the register rs, and stores the result in 
register rs. 

 
And Immediate (I) 
 andi rs, imm 
 
Performs bitwise AND on the zero-extended immediate and the value in register rs, and stores 
the result in register rs. 
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Or (A) 
 or A 
 
Performs bitwise OR on register A and the accumulator, and stores the result in the accumulator. 

 
And (A) 
 and A 
 
Performs bitwise AND on register A and the accumulator, and stores the result in the 
accumulator. 

 
Shift Left Immediate (I) 
 sli A, imm 
 
Performs bitwise left shift by the zero-extended immediate imm on the value stored in the 
accumulator, and stores the result in register A. 

 
Shift Right Immediate (I) 
 sri A, imm 
 
Performs bitwise right shift by the zero-extended immediate imm on the value stored in the 
accumulator, and stores the result in register A. 

 
Read Input (A) 
 ri A 
 
Reads outside input into register A. 

 
Program Ready (A) 
 pr 
 
Reads program ready signal from control and uses it to start program execution. Stores into CR. 
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Instruction Formats 

 
 
Accumulator Type (A):  

opcode (4) rs (4) FUNCT (8) 

 
Immediate Type (I):  

opcode (4) rs (4) imm (8) 

 
Branch Type (B) 

opcode (4) address (12) 

 
i) SignExtImm = {8{immediate[7]}, immediate} 
ii) JumpAddr = {PC+1[15:12], address} 
iii) ZeroExtImm = {8’b0, immediate} 
iv) BranchAddr = PC+1+ {4{address[11]}, address} 
 
Machine Language Translation Instructions 

1. Opcodes and function codes are translated into binary 
2. Registers are translated by their numbers into binary 
3. Immediates are directly translated (Use sign extended addressing, however. Refer to 

symbolic definitions) 
4. Branch addresses are calculated by adding the address to PC + 1.  

 
Destination = PC + 1 + (address) 
 

5. Jump addresses are calculated by appending the address to the first four bits of PC + 1.  
Examples: 

1. add $sp - 0000 1110 0000 0000 
2. ori $t0, 34 - 1001 1000 0010 0010 
3. bez LABEL - 0100 0000 0000 0010 (This assumes LABEL is 2 instructions away from 

PC+1) 
4. jr $acc - 0000 0111 0000 1010   
5. j LABEL - 0111 0000 0001 1000 (This assumes LABEL is at address 0000 0000 0001 

1000) 
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Procedure Calling Conventions
 

 
When calling a procedure: 

1. Pass arguments using $a0-$a3 registers. If there are more than 4 arguments, pass them to 
the stack. 

2. Back-up registers that are not preserved across a call. These would be the $a registers, $ra 
register, temporary registers, and the current accumulator.  

3. Perform an srj instruction, which jumps to a procedure’s first instruction and saves the 
return address into $ra. 

4. Once returned, restore $a0-$a3, $t0-$t1, and $ra and deallocate stack space.  
Inside the callee: 

1. Perform operations and repeat caller steps if the procedure calls another. 
2. Allocate stack space 
3. Backup saved temporary values onto the stack 
4. Place return values in $r0 and $r1 
5. Restore saved temporaries 
6. Deallocate any reserved stack space 
7. Return by jumping to $ra 
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Reference Card 
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Assembly Language Usage 

 
 

Assembly Fragments
 

Name Pseudocode Assembly Equivalent 

Conditional 
Statement 

if (a < b){ 
    c = a + b; 
} 

   sr a        #set value of a into acc 
   slt b       #compare acc value to b 
   bez SKIP    #if $cr = 0, break  
   add b       #if not, add b to acc 
   sm c, 0     #store result into c 
SKIP:  

Loop while (a <= b){ 
   a += 1; 
} 

sr a             #set value of a into 
accumulator 
LOOP:  
   slt b         #check if b is less than 
a 
   bnez NEXT     #if cr != 0, skip 
   addi, $acc 1        #else, add 1 to acc 
   j LOOP        #loop 
NEXT: 

Load second element 
of array stored at A 

x = A[1]; lm A, 1  

Allocate Stack and 
store a value 

Stack[0] = 5; lui $sp, 3     #set up stack pointer 
ori $sp, 255                
addi $sp, -1   #subtract 1 to accumulator  
si $acc, 5     #set accumulator to 5 
sm $sp, 0      #store accumulator value 
sm $sp, 1      #store duplicate value 

Call a sub-procedure x = foo(y); lui $sp, 3     #set up stack pointer 
ori $sp, 255 
si $a0, y     #set accumulator to y 
addi $sp, -1  #add -1 to accumulator 
sr $ra        #set accumulator to $ra 
sm $sp, 0 
sr $a0 
sm $sp, 1      
srj foo       # call foo 
lm $sp, 0 #load memory into accumulator  
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cr $ra        #copy value into $ra 
lm $sp, 1 #load memory into accumulator  
cr $a0  
addi $sp, 1  #add 1 to the accumulator 
sr $r0 

Wait For Input while(pr != 1){ 
 
} 
//program    

start: 
pr $cr        #check if program is ready 
benz next     #if so, branch to program 
j start       #else, jump to loop 
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Relative Primes Program in Java

 
// Find m that is relatively prime to n. 

int relPrime(int n) 

{ 

   int m; 

   m = 2; 

   while (gcd(n, m) != 1) {  // n is the input from the outside world 

     m = m + 1; 

   } 

   return m; 

} 

 

// The following method determines the Greatest Common Divisor of a 

and b using Euclid's algorithm. 

 

int gcd(int a, int b) 

{ 

  if (a == 0) { 

    return b; 

  } 

  while (b != 0) { 

    if (a > b) { 

      a = a - b; 

    } else { 

      b = b - a; 

    } 

  } 

  return a; 

} 
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Program in JAHS Assembly Language 

 
 

lui $sp, 3     #set up stack pointer 

ori $sp, 255     

start:  

pr $cr       #check if program is ready 

benz relprime    #if so, branch to program 

j start     #else, jump to loop 

relprime:  

ri $a0     #read outside input 

addi $sp, -1    #allocate stack space 

sr $a0      

sm $sp, 0     #store N into Memory 

si $a1, 2     #initialize argument M to 2 

LOOP1:  

sr $a1      

sm $sp, 1     #store M into Memory 

srj GCD     #jump to GCD 

lm $sp, 0     #once returned, load N 

cr $a0  

lm $sp, 1     #load M 

cr $a1 

si $acc, 1      

eq $r0 

benz FINISHED    #if not while condition, finish  

addi $a1, 1    #if while condition, increment M 

j LOOP1     #jump back to loop 

FINISHED:  

sr $a1     #copy M into accumulator 

cr $r0     #copy accumulator into R0 

j start     #wait for new input 

GCD:  

sr $a0     #check initial condition 

eq $0 

benz BReturn 

LOOP2:  

sr $a1     #enter while loop 

eq $0 
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benz AReturn    #if while loop fails, return A 

sgt $a0     #else, check a > b 

bez ELSE     #if a !> b, branch to else 

sr $a0 

sub $a1     #subtract b from a 

cr $a0 

j LOOP2 

ELSE:  

sr $a1 

sub $a0     #subtract a from b 

cr $a1 

j LOOP2 

BReturn:       #return condition for initial 

sr $a1 

cr $r0 

jr $ra 

AReturn:       #return condition for post-loop 

sr $a0 

cr $r0 

jr $ra 
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Machine Code Translation 

 
 

PC Address Hex Assembly 

0000 0000 0000 0000 
0000 0000 0000 0001 
0000 0000 0000 0010 (start) 
0000 0000 0000 0011 
0000 0000 0000 0100 
0000 0000 0000 0101 (relprime) 
0000 0000 0000 0110 
0000 0000 0000 0111 
0000 0000 0000 1000 
0000 0000 0000 1001 
0000 0000 0000 1010 (LOOP1) 
0000 0000 0000 1011  
0000 0000 0000 1100 
0000 0000 0000 1101 
0000 0000 0000 1110 
0000 0000 0000 1111 
0000 0000 0001 0000 
0000 0000 0001 0001 
0000 0000 0001 0010 
0000 0000 0001 0011 
0000 0000 0001 0100 
0000 0000 0001 0101  
0000 0000 0001 0110 (FINISHED) 
0000 0000 0001 0111 
0000 0000 0001 1000 
0000 0000 0001 1001 (GCD) 
0000 0000 0001 1010 
0000 0000 0001 1011  
0000 0000 0001 1100 (LOOP2) 
0000 0000 0001 1101 
0000 0000 0001 1110  
0000 0000 0001 1111 
0000 0000 0010 0000 
0000 0000 0010 0001 
0000 0000 0010 0010 
0000 0000 0010 0011 
0000 0000 0010 0100 
0000 0000 0010 0101 (ELSE) 
0000 0000 0010 0110  
0000 0000 0010 0111  
0000 0000 0010 1000 
0000 0000 0010 1001 (BReturn) 
0000 0000 0010 1010 
0000 0000 0010 1011  
0000 0000 0010 1100 (AReturn) 
0000 0000 0010 1101  
0000 0000 0010 1110  

8e03, 
9eff, 
000b, 
4001, 
7002, 
030a, 
beff, 
0304, 
2e00, 
5402, 
0404, 
2e01, 
6019, 
1e00, 
0305, 
1e01, 
0405, 
5701, 
0106, 
4002, 
b401, 
700a, 
0404, 
0105, 
7002, 
0304, 
0006, 
400d, 
0404, 
0006, 
400d, 
0303, 
3004, 
0304, 
0401, 
0305, 
701c, 
0404, 
0301, 
0405, 
701c, 
0404, 
0105, 
0f09, 
0304, 
0105, 
0f09, 

lui $sp, 3   
ori $sp, 255 
pr $cr 
benz relprime 
j start 
ri $a0 
addi $sp, -1 
sr $a0 
sm $sp, 0 
si $a1, 2 
sr $a1 
sm $sp, 1 
srj GCD 
lm $sp, 0 
cr $a0 
lm $sp, 1 
cr $a1 
si $acc, 1 
eq $r0 
benz FINISHED 
addi $a1, 1 
j LOOP1 
sr $a1 
cr $r0 
j start 
sr $a0 
eq $0 
benz BReturn 
sr $a1 
eq $0 
benz AReturn 
sgt $a0 
bez ELSE 
sr $a0 
sub $a1 
cr $a0 
j LOOP2 
sr $a1 
sub $a0 
cr $a1 
j LOOP2 
sr $a1 
cr $r0 
jr $ra 
sr $a0 
cr $r0 
jr $ra 
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Implementation 
 

 

RTL Specification
 

 

Instruction RTL 

add R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A + B 
Reg[7] = ALUOut 

sub R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A - B 
Reg[7] = ALUOut 

slt R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = B slt A 
Reg[13] = ALUOut 

sgt R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A slt B 
Reg[13] = ALUOut 

bez R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
if (CR == 0): PC = PC + SE(IR[11:0]) 
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benz R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
if (CR != 0): PC = PC + SE(IR[11:0]) 

sr R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
Reg[7] = A 

cr R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
Reg[IR[11:8]] = A 

and R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A & B 
Reg[7] = ALUOut 

or R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A | B 
Reg[7] = ALUOut 

jr R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
PC = B 

eq R PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = ZERO 
Reg[13] = ALUOut; 

addi A, imm PC = PC + 1 
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IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A + ZE(imm) 
Reg[IR[11:8]] = ALUOut 

andi A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A & ZE(imm) 
Reg[IR[11:8]] = ALUOut 

ori A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A | ZE(imm) 
Reg[IR[11:8]] = ALUOut 

lui A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
Reg[IR[11:8]][15:8] = IR[7:0], 8b’0 

j L PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
PC = (newPC[15:12], IR[11:0])  

srj L PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
PC = (newPC[15:12], IR[11:0]) 
Reg[15] = PC 

si A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = SE(imm) + 0 
Reg[IR[11:8]] = ALUOut 
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lm R, off PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = SE(off)+B 
Reg[7] = Mem[ALUOut] 

sm R, off  PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = SE(off)+B 
Mem[ALUOut] = Reg[7]  

sli A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A << ZE(imm) 
Reg[IR[11:8]] = ALUOut 

sri A, imm PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
ALUOut = A >> ZE(imm) 
Reg[IR[11:8]] = ALUOut 

ri A PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
Reg[IR[11:8]] = OutsideInput 

pr PC = PC + 1 
IR = Mem[PC] 
A = Reg[7] 
B = Reg[IR[11:8]] 
Reg[13] = ProgramReady 
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RTL Summary Table 

 
 

A type cr/sr lm/sm/jr  bez/benz ori/andi/si/lui/sli/sri/addi j/srj 

PC = PC + 1 

IR = Mem[PC] 
A = Reg[7] 

B = Reg[IR[11:8]] 

ALUOut  = A OP B 
 

eq: ALUOut =  ZERO 
 

slt: ALUOut = B OP A 

 ALUOut = 
SE(off)+B 

 
jr: PC = B 

bez: if (CR == 
0): 

PC = PC + 
SE(IR[11:0]) 

 
benz: if (CR != 

0): 
PC = PC + 

SE(IR[11:0]) 

ALUOut =  
A OP ZE(imm) 

 
si: ALUOut = SE(imm) + 0 

 
sli: ALUOut = A << ZE(imm) 
sri: ALUOut = A >> ZE(imm)  

srj: Reg[15] = 
PC 
 

Reg[7] = ALUOut 
 

eq, slt, sgt: 
Reg[13] = ALUOut 

 
ri: Reg[IR[11:8]] = 

OutsideInput 
 

pr: Reg[13] = 
ProgramReady 

sr: Reg[7] 
= A 
 

cr: 
Reg[IR[11:8

]] = A 

lm: Reg[7] = 
Mem[ALUOut] 

 
sm: 

Mem[ALUOut] = 
Reg[7] 

 Reg[IR[11:8]] = ALUOut 
 

lui: Reg[IR[11:8]][15:8] = 
IR[7:0] C 8b’0 

 

PC = (PC[15:12], 
IR[11:0]) 
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Component Descriptions 

 
 

Component Input Signals Output Signals Control Signals Implementation 

ALU ALUIn1 (16) 
ALUIn2 (16) 

ALUOut(16) 
Zero (1)  

ALUOp (2)  

Register Write (16) Read (16) N/A PC, ALUOut, A, 
B, Intermediate 
Stage Registers 

Register File WriteReg (16) 
WriteData (16) 
ReadReg1 (4) 
ReadReg2 (4) 

ReadData1 (16) 
ReadData2 (16) 

RegWrite (1) Reg 

Data Memory DataAddress(16)
WriteData (16) 

OutputData (16) DataWrite (1) Mem 

Instruction 
Memory 

InAddress (16) OutputData (16) DataWrite (1) Mem 

Left Shifter InData (12) 
InData (16) 

OutData (16) NumBits (8) << 

Right Shifter InData (12) 
InData (16) 

OutData (16)  NumBits (8) >> 

Sign Extender InData (12) OutData (16) N/A SE 

Zero Extender InData (8)  OutData (16)  N/A ZE 

Adder AddIn1 (16) 
AddIn2 (16) 

OutData (16)  Used for PC 
incrementation 

Combiner PCin (3) 
ImmIn(13) 

newPC (16)  Used to create 
jump addresses 

Control Unit OP (4) 
FUNCT (8) 
reset 

See below  Controls 
processor 
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● ALU:  

The ALU controls data values and what kind of changes are made to them. Depending on 
the opcode, the ALU can add, multiply, subtract, or divide the given inputs from each 
other, giving us a resulting output based on these functions. 
 

● Adder: 
The Adder is used to adjust the Program Counter [PC]. If the adder receives an offset 
from an instruction, then the output will add it to the PC to reflect the change. Otherwise, 
if the cycle runs normally it will increment the PC to the next instruction in the program. 
 

● Register File: 
The register file keeps track of information held inside of the registers being used in the 
program. Any data input is written into the registers, and outputs are the data that was 
read from these registers.  
 

● Data Memory: 
The Data Memory component stores inputs for retrieval later. This then outputs this 
stored memory when the control signal calls for it. 
 

● Instruction Memory: 
The Instruction Memory takes in the specific instruction, splits the instruction 
information, and then sends the information to the specified component. Depending on 
whether or not the instruction has a single register and an immediate, a single register, or 
just an immediate, the instruction memory will output each section to either the Register 
File or another specified component needed for the data path. 
 

● ShiftLeft (Barrel Shifter): 
The ShiftLeft component takes in an immediate and shifts the value to the left a specified 
amount of bits. 
 

● ShiftRight (Barrel Shifter): 
The ShiftRight component takes in an immediate and shifts the value to the right a 
specified amount of bits. 
 

● Sign-Extend: 
If Sign extend should be used, this component takes in the input value to be 
sign-extended and appends copies of the most significant bit to the front until the rest of 
the empty bits are filled. The output would then result in the sign-extended version of the 
input. 
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● Zero-Extend: 

If zero extend should be used, this component takes in the input value to be 
zero-extended and appends zeros to the front until the rest of the empty bits are filled. 
The output would then result in the zero-extended version of the input. 
 

● Combiner: Combines the top 4 bits of PC with the Left shifter sign extended immediate 
for the jump and set return and jump instructions. These are combined to output a 16 bit 
value that is loaded into PC.  
 

● Control Unit: Controls the processor by reading the OP code of the current instruction 
and sending the necessary control signals (see below) to the rest of the machine. 

 

Overview of Our Error-Checking Process on the RTL 
 

 
When checking our RTL for errors, we first made sure that all the bits were the correct numbers 
and the first three lines for each instruction in the RTL matched each other. We then double 
checked exactly what each instruction’s function does and what that function affects, such as 
whether it takes anything from memory or it uses an immediate and the accumulator. We then 
matched up the bits with the rs, rt, accumulator, and other registers to make sure they were 
correctly completing the functions they were supposed to. This verified to us that the RTL is 
correct. 
 

Note on Changes Made Since Milestone 1 
 

 
We first fixed up some inconsistencies in the bits and instructions. We also added instructions for 
shifting to the right and to the left, updating the instruction sheet and adjusting the RTL, as well 
as the other related parts of this document to reflect this addition to our instruction list.  
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Datapath Block Diagram
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Control Signal Descriptions
 

● PCSrc - chooses what is written into PC. The three options are: PC + increment, a jump 
address (defined above), or the value stored in register B. The last option is used for the 
jump register instruction. 
  

● PCInc - chooses what PC is incremented by. The two options are: 2 and the left shifted 
sign extended immediate produced by the bez or benz instructions. 
 

● addrSrc - chooses the read/write address for memory. This is PC or the address defined in 
register B, which implements sm and lm. 
 

● MemWriteE - Write enable flag for memory. 
 

● WriteData - Chooses what data is written into the register file. Chooses between: data 
read from memory, A register, B register, PC, zero-appended immediate, or ALUOut. 
 

● RegWrite - Chooses which register data is written into. Chooses between: The 
accumulator, the comparison register, return address register, or the register defined in 
I-type instructions. 
 

● RegWriteE - Write enable flag for the register file. 
 

● SrcA - Chooses what goes into the first input of the ALU. The choices are: Register A, 
Register B (for sgt), and the sign extended immediate.   
 

● SrcB - Chooses what goes into the second input of the ALU. The choices are: Register B,  
Register A (for sgt), zero, the sign-extended immediate, or the zero-extended immediate.  

 
● OutSrc - Chooses what value ALUOut gets. The choices are: the ALU output, shift 

output (both left and right), and the result of the zero flag on the ALU.      
 

● ALUOp - Decides what operation the ALU performs. 
 

● PCWrite - Enables writing to the PC Register 
 

● IRWrite - Enables writing to the IR Register 
 

● MDRWrite - Enables MDR Register 
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● Btype - Indicates which type of branch is being used 
 

● Branch - And’s with the output of the comparison in order to set PC to either the branch 
target or not. 
 

● regWriteExecute - Enables register writing for the A and B registers 
 

● OutRegWrite - Enables writing of the ALUOut register 
 

Component Implementation Plan 
 

 
● ALU: We plan to use the standard ALU designs that are currently used for most 

applications. We will not be making a custom ALU. 
 

● Register: We plan to use the standard Register designs that are currently used for most 
applications. We will not be making custom registers. 
 

● Register File: We plan to use the standard Register File designs that are currently used for 
most applications. Our Register file will contain 16 registers that can be written to and 
read from. It will have dedicated outputs for the accumulator and the comparison register. 
 

● Data Memory: We plan to use the standard designs that are currently used for most 
applications. Each address in memory will refer to 2 bytes, or 16 bits. Both Data and 
Instruction memory will be stored in the same block of DRAM. 
 

● Instruction Memory: We plan to use the standard designs that are currently used for most 
applications. Each address in memory will refer to 2 bytes, or 16 bits. Both Data and 
Instruction memory will be stored in the same block of DRAM. 
 

● Left Shifter: This component will shift the bits of the input signal to the right by an 
amount given by another input signal. Dynamic shifting will be done with a custom 16 bit 
barrel shifter. 
 

● Right Shifter: This component will shift the bits of the input signal to the left by an 
amount given by another input signal. Dynamic shifting will be done with a custom 16 bit 
barrel shifter.  
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● Sign Extender: This component will be implemented by taking in the input signal, and 

setting the rest of the most significant bits to a copy of the most significant input bit. 
 

● Zero Extender: This component will be implemented by taking in the input signal, and 
setting the rest of the most significant bits to 0.  
 

● Adder: To implement this, we will create an adder circuit that adds two 16 bit input 
values, and outputs a 16 bit value. This was most easily done in Verilog. 
 

● Combiner: This component will be implemented by taking two sets of input signals and 
combining them to output one 16 bit signal.  
 

● Control Unit: To implement this, the logic will represent a table that we design, sending 
the correct control signals every time each instruction reaches the decode stage. In 
Verilog, it will represent a finite state machine.     

 

Component Testing Plan 
 

 
● ALU: Testing the ALU by itself requires that we are able to change at least the inputs and 

opcode which would allow us to see if the ALU properly functions. This includes testing 
operations such as adding and subtracting (or adding negative numbers) by checking if 
the ALU first can properly take in inputs and change them, and then checking if the 
opcodes correctly match the operations they are completing on the inputs. We also need 
to be aware if we need to be able to change registers or values at certain addresses. 
 

● Register: To test a single register, we need to be sure that the component can read and 
write to the register. To test this specifically, we need to check if the input writes into 
memory, allowing it to be stored for later use, and then we need to try to read that input 
from the memory and make sure the value isn’t changed or affected in any way during 
the transfer. 
 

● Register File: A register file should be allowed to be accessed using register addresses. A 
good way to test the register file would be to put multiple inputs into the file and reading 
these values in different orders, as well as changing these values and reading them to 
make sure the addresses keep track of the input-to-register values and there is no form of 
mixing or value changes due to old values previously existing in the registers. 
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● Data Memory: This would be similar to testing the register and register file component. 

By allowing the data memory to either have information stored by address or register (or 
both), we can input values into the data memory to write the values into the memory 
addresses. We will then test if the data writing succeeded and read out the data to make 
sure it is the same value as what we originally wrote in. To thoroughly test this memory, 
we will need to repeat the data writing and reading process several times over several 
different addresses, checking the furthest addresses that data can be read or written to. 
 

● Instruction Memory: To test instruction memory, it would be easier to see errors if certain 
instructions were already connected and set up with this component, like an ALU to 
check if the right operations were performed on inputs. However, we can test if the right 
instructions are being called by writing addresses into the instruction memory and simply 
reading out the same addresses to make sure they aren’t changed when they are written or 
read out. We then just need to consistently check operations that are set up to certain 
instruction addresses to make sure each instruction performs the expected operation due 
to the correct address call. 
 

● Left Shifter: Just like testing the ALU, we need to make sure that this component can 
take in inputs and change it/them accordingly. Since this has a very specific function, left 
shifting the bits, we just need to allow for one input that needs to be shifted, one input for 
how much the first input is shifted, and an output for the result. By checking to make sure 
that the results are simply the left shifted values of the inputs based on the amount they 
should be left-shifted, we can check to make sure this is working properly. 
 

● Right Shifter: As we test the left shifter component, we do the same for the right shifter, 
except we just need to check that the input value-to-be-shifted is shifted to the right the 
correct amount of bits based on the second input. 
 

● Sign Extender: To test the sign extender properly, we just need to check that not only is 
the value properly extended in the number of bits to the size it needs to be, but also that 
the value, in numbers only, isn’t changed and is signed the same as the input.  
 

● Zero Extender: To test the zero extender properly, we need to check that not only is the 
value properly extended in the number of bits to the size it needs to be, but also that the 
value isn’t changed. 
 

● Adder: We will test this by adding different positive and negative numbers, and verifying 
that the outputs are correct. 
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● Combiner: The combiner will need to test if the 2 input signals combine to an output 

signal that contains both of the inputs in the correct order. 
 

● Control Unit: The control unit will be tested when connected with at least one or more 
other components that have already been checked to work. 

 

Integration Plan 
 

 
For integrating the smaller pieces into the larger subsystems that will eventually come together to 
be the full microcomputer, we will start by connecting the most similar pieces together that 
accomplish similar functions. This includes connecting pieces such as the shifters and ALU 
together, as well as the instruction memory to allow for tests of these functions. Since our 
processor is multicycle, we will integrate each cycle’s components sequentially, starting with PC 
increments, then register reads, then calculations, memory interactions, and finally register 
writes. We will just need to be aware of any control units used in specific portions of the 
subsystems so each subsystem can be tested and verified to work as they should, with and 
without the rest of the other subsystems. 

Note on Changes Made Since Milestone 2 
 

 
For this milestone, we adjusted all of the RTL for each instruction, after realizing that the best 
idea would be to make each instruction be completely consistent for the first two instructions. 
This ended up making some instructions longer, but made the whole set more consistent.  
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Control State Diagram 
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Control Implementation Plan 
 

 
First we will identify the types of control signals we will need and what each will be used for so 
that we can properly place them when they are implemented. After each control is identified, we 
will go through each of the inputs and outputs that will be for the controls and start labeling them 
as we work out how they fit into the operations of the control units. We will draft up each unit 
individually from there on Verilog, and unit test each of them using other parts that have already 
been tested and have been verified to work. 
 
 

Note on Changes Made Since Milestone 3 
 

 
Adjustments were made to the datapath to implement lui correctly, as well as add a dedicated 
output for the comparison register, and branch logic using an XOR gate and an AND gate to 
decide whether to take a branch or not. It also seems we missed adding any RTL for addi, so that 
is now added. Added to the integration plan to keep in mind about control unit integration. 
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Performance Metrics
 

Memory Usage: (46 Instructions + 2 Stack locations) * 2 Bytes  = 96 Bytes 
 
Total number of instructions executed for input 0x13B0: 91901 
 
Maximum frequency (defined by Xilinx) : 17.782 MHz 
 
Minimum period (defined by Xilinx) : 50.237 ns 
 
Instruction Breakdown:   

Instruction Type Cycles per Instruction Number of Instructions Cycles 

A-type 5 30591 152955 

I-type 
Arithmetic 

5 22 110 

Branch 4 20404 81616 

Jump 4 10206 40824 

Lui 4 2 8 

Srj 4 10 40 

Data Copy 4 30635 122540 

Sm 5 11 55 

Lm 7 20 140 

Totals:  91901 398288 
 
Average CPI of the machine running with input 0x13B0: 398288/91901 = 4.334 CPI  
 
Execution time: 

 𝐸𝑇 =  #𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 *  𝐶𝑦𝑐𝑙𝑒𝑠/𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 *  1 𝑠𝑒𝑐𝑜𝑛𝑑/𝐶𝑦𝑐𝑙𝑒𝑠

 𝐸𝑇 =  91901 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 *  4. 334 𝐶𝑃𝐼 *  1 𝑠𝑒𝑐𝑜𝑛𝑑/(17. 782 * 106) 𝐶𝑦𝑐𝑙𝑒𝑠 
= 22.4 Milliseconds 𝐸𝑇 =  0. 0224 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
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Device Utilization Summary 

 

Logic Utilization Used Available Utilization 

Total Number Slice Registers 359 9,312 3% 

    Number used as Flip Flops 341     

    Number used as Latches 18     

Number of 4 input LUTs 720 9,312 7% 

Number of occupied Slices 511 4,656 10% 

    Number of Slices containing only related logic 511 511 100% 

    Number of Slices containing unrelated logic 0 511 0% 

Total Number of 4 input LUTs 728 9,312 7% 

    Number used as logic 720     

    Number used as a route-thru 8     

Number of bonded IOBs 56 232 24% 

Number of RAMB16s 1 20 5% 

Number of BUFGMUXs 1 24 4% 

Number of RPM macros 3     

Average Fanout of Non-Clock Nets 3.55     
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