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Abstract 

 
 

Sparse networks are defined as neural networks that have been “pruned” down. Pruning a model is 

when a percentage of connections and neurons get completely removed from the network. The end 

result is a fully trained network that has almost identical network performance to a dense network 

(one that has not been pruned). The benefit of removing connections and neurons from a network is 

increased memory and computational efficiency.  

 

We challenge the efficiency versus accuracy in sparse networks when classifying movie Motion 

Picture Association of America (MPAA) ratings based on their synopses. Many applications of 

sparse networks deal with image classification and focus heavily on traditional, fully connected 

networks. We expand the topic to include a natural language application using techniques common 

to the field. This includes varying neural architectures that are designed for recognizing sequences, 

word embeddings, and tokenization. We believe pruning will be especially useful and needed in 

these networks. For example, a recurrent neural network (RNN) and its “unfolded” counterpart has 

many layers and neurons. Using network pruning as a supplement to traditional neural network 

training methods such as backpropagation and Backpropagation Through Time (a common 

technique for training RNNs), we can increase the efficiency of these networks while not 

significantly decreasing performance. 

 

We will show that the use of sparse networks in natural language applications is not only feasible, 

but advantageous when large networks are involved, saving memory and computation energy. Most 

of the studied architectures perform just as well at 10% of their original size when compared to their 

dense counterparts.  

 

Introduction 

 
 

When looking at efficiency versus accuracy in the 

pruning process of neural networks, there are many 

factors to consider. This is a topic that has been 

covered in multiple prior works, most notably: “The 

Lottery Ticket Hypothesis: Finding Sparse Trainable 

Neural Networks” by Jonathan Frankle and Michael 

Carbin[1]. They describe a “winning ticket” 

subnetwork: a smaller network within a neural 

network that contains fewer parameters. They state 

that “dense, randomly-initialized, feed-forward 

networks” contain these winning tickets. We intend to 

use this method for finding winning tickets in the field 

of natural language processing with various neural 

network architectures including: recurrent neural 

networks (RNN), long short term memory networks 

(LSTM), gated recurrent units (GRU), convolutional 

neural networks (CNN), and fully connected neural 

network. Because pruning usually occurs during the 

training process, where after an amount of cycles the 

network “prunes” and removes a set percentage of 

connections based on their magnitude, we will train 

these networks to varying densities, from 100% full to 

99% empty. We classify the MPAA film ratings of 

various movies based on a concise plot synopsis. This 

type of classification task is very similar to the task in 

“Prediction of a Movie’s Success From Plot 

Summaries Using Deep Learning Models” by You Jin 

Kim among others [2], as well as in “Predicting the 

Genre and rating of a Movie based on its Synopsis” by 

Varshit Battu and others [3]. Both papers describe 

models that use the plot of a movie to classify different 

aspects of the movie, whether it be success or genre. 

Using what we have learned from these papers we 
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classify the MPAA rating of a film based on a movie’s 

plot synopsis using sparse networks to further 

investigate the effects of pruning in text classification. 

 

Model Creation 

 
 
We show that models of various architectures can be 

pruned while maintaining their accuracy when 

classifying sentences. We studied six models and 

achieved various levels of success. We constructed our 

models using Google’s open source deep learning 

Tensorflow library.  Tensorflow allows for the quick 

prototyping and training of models, and its built-in 

tokenizer allows for defining datasets with integers 

that correspond to each individual word. This allows 

us to pass our plot summaries into the embedding layer 

that is included in all of the architectures used in this 

paper. The embedding layer learns the words and 

converts them into high dimensional vectors for the 

model to use. Figure 1, below, displays an example of 

the eight-dimensional vectors used in our fully 

connected model. After training, words with similar 

meanings should also have similar dimensional 

features such as magnitude and direction. 

 

In the following section we will briefly outline each 

of our models, describing layer sizes and functions. 

 

Fully Connected 

 

The classic fully connected neural network is a strong 

tool for many different tasks, sentence classification 

being one of them. Our fully connected model 

contains the following layers: 

1. Embedding layer  

2. Flatten 

3. Dense (320) 

4. Dense (64) 

5. Dense (4) - Softmax 

This model had two hundred-thousand trainable 

parameters. We had to include a flattening layer in 

between the embedding layer and dense network in 

order to convert the eight-dimensional vectors into a 

shape that can be understood by the fully connected 

dense network. 

 

1-D Convolutional 

 

Convolutional neural networks excel at image 

classification tasks. CNNs use a multitude of 

techniques such as pooling and filters in order to scan 

data for patterns. We attempted to use this idea to scan 

sections of each input sentence. Our model 

implementing a convolutional layer consisted of the 

following layers: 

1. Embedding 

2. 1D-Convolutional (5 filters) 

3. Dropout (10%) 

4. Dense (10) 

5. Dense (4) - Softmax 

This network contained almost nine hundred-thousand 

trainable parameters. We included a dropout layer in 

this model in order to help prevent overfitting by 

randomly excluding different connections. 

 

Recurrent Neural Networks 

 

Recurrent neural networks are very similar to feed 

forward networks, but the output of a layer is also fed 

back as an input for the next step in time. This allows 

for sequenced data to be used as input. This gives the 

network a form of memory, making it very useful for 

text classification. Tensorflow’s “SimpleRNN” layer 

is a very basic implementation of a recurrent neural 

network. Our model contained the following layers: 

1. Embedding 

2. SimpleRNN 

3. Dense (64) 

4. Dense (4) - Softmax 

This network also contained almost nine hundred-

thousand trainable parameters. Overall this is a pretty 

straight forward model through which we are 

attempting to test the ability of the “SimpleRNN” 

layer.  

 

Gated Recurrent Unit 

 

The gated recurrent unit is a specialized type of 

recurrent network that uses extra logic gates in order 

to analyze the data. This allows it to remember aspects 

of input data for longer amounts of time, which is a 

common problem often found with RNNs. Our GRU 

model is very similar to our RNN model, only 

Figure 1: A radar plot of the embedding 

dimensions of two related words: “blood” 

and “death”. 



replacing the “SimpleRNN” with a GRU layer. This 

network also contained almost nine hundred-thousand 

trainable parameters. 

 

Long Short-Term Memory 

 

Long short-term memory units (LSTMs) are another 

type of specialized RNN. LSTMs have even more 

gates and paths for data to pass through when 

compared to a  GRU. The LSTM adds another output 

that is only used internally in-between time steps. We 

implemented two different models with the LSTM 

layers. Our first model was constructed as follows: 

1. Embedding 

2. LSTM (256, returns sequences) 

3. LSTM (64) 

4. Dense (64) 

5. Dense (4) - Softmax 

This first LSTM contained 1.2 million trainable 

parameters. Our second LSTM model added an LSTM 

that processed the data in reverse to gain even more 

information about the passage. This was accomplished 

by adding another LSTM layer of size two hundred 

fifty-six output dimensions that returns sequences and 

goes backwards in between the second and third layer 

of the previous model. This model contained 1.8 

million trainable parameters. 

 

 

Dataset and Data Pipeline 

 
 

The main goal of this project was to classify movie 

MPAA ratings based on the movie’s synopsis. The 

IMDB Top 250 Lists and 5000-plus IMDB records 

dataset compiled by the data.world (a popular dataset 

website) user TheMitchWorksPro contains two large 

CSV files of about five-thousand records each [4]. Of 

these records, about eight thousand were usable. Some 

needed to be removed because they had missing 

ratings, or only had a handful of training examples. For 

instance, there were only seventeen movies that were 

rated NC-17 in the dataset, which did not provide 

enough examples for training. 

 

Then we passed all of the input sequences to a 

tokenizer, as mentioned earlier. This tokenizer 

converts a sentence such as [I, love, Machine, 

Learning] to a sequence of integers [1, 904, 345, 12]. 

This sequence is data that the embedding layer, which 

precedes every model, can accept. For our models, we 

chose to use eight embedding dimensions for the fully 

connected model, and sixty-four for all of the others. 

From here, the data is passed into one of the six models 

described above. We shuffled the dataset, and isolated 

five hundred records for testing.  

 

One of the main challenges we had with the dataset 

was data imbalance. Over half of the training examples 

were R-rated, which biased the classifier towards that 

rating. To combat this, we set the models to weigh 

each training example differently based on that label’s 

percent share of the total dataset.     

𝑤𝑒𝑖𝑔ℎ𝑡 =
(

1
𝑐𝑜𝑢𝑛𝑡𝑐𝑙𝑎𝑠𝑠

) ∗ 𝑐𝑜𝑢𝑛𝑡𝑡𝑜𝑡𝑎𝑙

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
 

Where strength is an arbitrary constant that adjusts 

the value that the classifier biases each class weight 

by. This ended up being a small optimization, 

bringing our test network accuracy from 94.7% to 

98.8%, but was nice to have before we began testing 

the larger and more complex networks.  

 

Finally, once data was input to the network, it was 

classified as a one-hot vector. For instance, movies 

that were R-rated received a data label of [1, 0, 0, 0]. 

This was necessary for the loss function we used: 

Cross Categorical Cross Entropy, which takes the 

output of softmax layers and uses it to calculate loss.  

 

 

  



Network Pruning 

 
 

To prune each network (listed above) we used 

Tensorflow’s built-in optimization library, 

specifically the prune_low_magnitude() method. 

Each prune-compatible layer was wrapped with this 

method, and passed a set of pruning parameters: 

● initial_sparsity 

● final_sparsity  

● begin_step  

● end_step  

● frequency 

Our testing only modified the final_sparsity 

parameter, which is the sparsity that the model is 

pruned up to between the begin_step and end_step, 

which we set to the beginning and end of training for 

simplicity.  

 

Due to our implementation strategy, the networks are 

pruned by layer, not as a whole. This coincides with 

the strategy used in Frankle and Carbin’s paper, in 

which they prune each of their smaller network’s 

layers at the same rate. They do, however, 

recommend global pruning for deep networks such as 

VGG-19 and RESNET-18 [1]. Future exploration of 

our topic could include testing the benefits and 

drawbacks of global pruning.  

 

 

 

Results and Discussion 

 
 

During testing, we measured and collected training metadata for each of the networks in their dense states and at 

eleven different sparsity levels: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99 percent. We hoped to compare how 

quickly each network converged when trained with the same dataset. Each network was then evaluated with an 

isolated test dataset, and the final accuracy of the network after 150 epochs of 20 examples each was plotted against 

the network’s sparsity level. This totaled up to 72 total networks evaluated. To prevent the page from getting too 

filled up, we’ll only display some highlighted results, and a link to the full set of results will be provided further 

down.

Highlighted Fully Connected Results 

 

This model was one of the most consistent that we tested. As listed below, the 80% sparse network trains just as 

quickly as the dense network, but tapers off at 90% sparsity (see full results) and especially when pruned to 99% 

sparsity. This model far outperformed our expectations, because it has no way to understand context or the way 

words relate to each other, this model was expected to struggle with remembering important information.  

 

  

Figure 2: Accuracy of a Fully Connected Model at varying sparsity levels. There is not much distinction between 0% and 80% 

pruned, but at 99% pruned the accuracy falls off. 



Highlighted 1-D Convolutional Results 

 

The model was unable to train to over 50% accuracy, regardless of the sparsity. If the input data had been formatted 

differently, we believe that this network could have performed better. For this specific application, however, a one-

dimensional CNN is not viable. 

 

 

Highlighted Recurrent Neural Network Results 

 

Again, this network was extremely consistent. It was able to train up to >99% accuracy in a similar number of 

epochs as LSTM v2 (see below), but with much fewer parameters. Even at 90% sparsity, it still performed just as 

well as the dense model. The two were so close that a change in scale on the y-axis of the plots was needed to 

represent the differences between the sparsity levels. 

 

  

Figure 3: Accuracy of a one-Dimensional CNN-based neural network at varying sparsity levels. This never achieved good 

results. 

Figure 4: Accuracy of a Simple RNN at varying sparsity levels. As the leftmost and middle figures suggest, a Simple RNN can be 

pruned to very low levels and still maintain exceptional accuracy. 



Highlighted Gated Recurrent Unit Results 

 

This model was also extremely successful. The dense model trained up to >99% accuracy within only 40 epochs. 

The sparse models slowed down a bit, but this is still an excellent model for pruning. Something interesting that we 

observed was that the first 20 epochs were inconsistent; this occurred at every sparsity level. 

 

Highlighted LSTM v1 Results 

 

This model was successful at classifying movies but was inconsistent and volatile at seemingly random sparsity 

levels. It would occasionally not converge, even at low sparsity levels. When it did converge, however, it trained 

quicker than the Gated Recurrent Unit, even at higher sparsity levels. 

 

  

Figure 5: Accuracy of a GRU-based model at varying sparsity levels. This model demonstrates the increased training time 

caused by pruning between the 0% and 70% sparsity levels, where the sparser model needs about 20 more epochs to be as 

accurate as its dense counterpart 

Figure 6: Accuracy of LSTM v1 (details above) at varying sparsity levels. The leftmost plot shows the volatility of the model. 

Once converged, however, this model performs well at high sparsity levels, as demonstrated by the middle plot. 



Highlighted LSTM v2 Results 

 

This model was very consistent overall. This is most likely due to the addition of a backwards LSTM that can better 

process the input sentences and how each word relates to the rest of the sentence. It performed much better than 

most of the other tested models, even at 99% sparsity. We believe that this is due to the large number of parameters 

that the model started off with.  

 

 

Conclusion 

 
 

When selecting the correct model architecture and structure, applying pruning techniques to text classification 

networks is an excellent strategy for optimizing memory usage and computation time. We have shown that sparse 

networks can match the performance of their dense counterparts when performing this classification task. Some can 

even be pruned up to 90% with no significant performance penalty, such as the LSTM v2 and the Simple RNN. 

While this could be explained by the fact that some of these networks started off with a high amount of parameters, 

we believe that our results more closely support a conjecture made in “The Lottery Ticket Hypothesis” where the 

authors conclude that an overparameterized network is easier to train because they have more combinations of 

subnetworks that have the potential to be winning tickets [1]. Our results support this conjecture; networks with high 

numbers of parameters consistently trained to >99% accuracy at almost every sparsity level. There is a limit, of 

course, to how much a network can be pruned before it loses its high dimensional understanding of a topic. We 

attempted to demonstrate this using the 99% sparsity tests. Our data suggests that the limit for each network is 

different and depends on its architecture and structure.  

 

Future Work 

 
 

There are a few extensions to our work that could be made, given more time. Network pruning is an expansive topic, 

and this project only scratched the surface of the many avenues that can be explored. Listed are a few potential 

topics that would be great extensions of our work and would answer detailed questions related to text classification 

and network pruning.  

 

Pruning Parameters 

 

In this project, we only explored the effects of changing the final_sparsity parameter. There are four more 

parameters in this specific implementation of network pruning alone, opening the door to experiment with 

combinations of these parameters and how they affect the effectiveness of pruned networks. Adjusting these 

parameters could reveal better pruning strategies that start pruning later in the training process or pruning a larger 

percentage of weights less often, for instance.  

 

Figure 7: Accuracy of LSTM v2 (details above) at varying sparsity levels. This model performed the best, most likely due to its 

high number of parameters. 



Dropout Layers 

 

Dropout layers function by temporarily disabling a portion of the total network every training cycle. These layers 

have been commonly shown to help prevent overfitting because they do not allow an entire network to learn the 

same task at once. Of course, this definition can be rephrased to state that dropout layers survey a random 

subnetwork every training cycle, which closely relates to network pruning. Studying this relation would be an 

excellent extension of our work.  

 

Reinitialization Testing 

 

Conclusions made in the “Lottery Ticket Hypothesis” are largely based on results gathered from reinitialization 

testing, a technique in which a sparse network (winning ticket) is randomly reinitialized to random values and 

retrained. These new networks often show inferior performance when compared to the winning ticket. This supports 

the hypothesis because it shows that the initial random initialization of a winning ticket benefits its performance [1]. 

We believe that running similar reinitialization experiments with our project setup could provide interesting results 

and potentially further support the lottery ticket hypothesis. Further testing of winning tickets specifically has 

already been conducted in another scope in a recent paper from 2019 [5]. 

 

 

Appendix 

 
 

Source code: https://github.com/HaveANiceDay33/NLPTesting/blob/master/MPAARatings.py 

 

Full result sets:  

1. Zoomed Graphs: https://github.com/HaveANiceDay33/NLPTesting/tree/master/GraphsZoomed  

2. Not Zoomed Graphs: https://github.com/HaveANiceDay33/NLPTesting/tree/master/GraphsNotZoomed 

 

Dataset: https://github.com/HaveANiceDay33/NLPTesting/tree/master/Data 
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